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Abstract

In this paper, we propose a traffic speed data imputation algorithm based on a
parameter transferred Long Short-Term Memory (LSTM) architecture for vehicle
to infrastructure (V2I) networks. We consider a scenario in V2I networks where an
Road Side Units (RSU) on the road does not operate temporarily and thus the traffic
speed data cannot be collected. This makes any services that rely on the traffic speed
data at the RSU be unavailable. For uninterrupted and seamless V2I services, an
efficient and low complexity data imputation algorithm is imperative. The proposed
algorithm is based on the architecture that includes multiple LSTM layers with
parameter transfers, which can explicitly take into account the spatio-temporal
characteristics of the traffic speed data. By transferring parameters from one LSTM
layer to its adjacent LSTM layer, the complexity associated with the algorithm can
be significantly reduced. The proposed algorithm includes bidirectional imputation,
which can further improve imputation accuracy. Our simulation and experiment
results confirm that the time for training and data imputation of the proposed
algorithm can be significantly reduced while maintaining imputation accuracy.

1 Introduction

Intelligent Transportation Systems (ITS) has been attracting considerable attention recently since
it enables the innovative development of smart cities as well as effective management of transport
systems [1–3]. The ITS technology can actively collect traffic information such as volume, speed,
direction, crash rate from various types of sources and is able to process such information. Moreover,
these advances have become the fundamental basis for service providers to provide data-driven
services such as vehicle and road maintenance, long and short term traffic management, road safety,
convenience services, etc. [4, 5]. For service providers, it is one of the most important goals to support
seamless services to the vehicles even when unexpected network malfunctions occur. For this, the
imputation of the data missed by such network malfunctions or network failure can play an essential
role in providing seamless data-driven services.

It is often challenging, however, to recover missing data in the vehicle to infrastructure (V2I) networks
because of the dynamic, complex, and stochastic characteristics of the traffic. Since the traffic data
collected at Road Side Units (RSU) changes over time and locations (i.e., spatio-temporal domain), the
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performance of data imputation significantly depends on environmental changes, making it difficult
to simply use predetermined models or algorithms. The problem becomes even more challenging if
the efficiency of the data imputation is taken into account. The time required for imputing the missing
data may be prohibitively high if a large size of data needs to be processed, so that the imputed data
may not be available when needed. Therefore, it is important to design efficient algorithms that can
reduce the time required for data imputation without degrading the data imputation performance.

Since the entities RSU and On-Board Units (OBU) that compose V2I networks generally have only
limited computing powers, the collected traffic data can be processed by cloud servers. However,
if the low end-to-end latency requirement restricts the use of cloud servers, the cloud computing
resources and storages can be placed at the edge of the vehicular network, even more decreasing
the round-trip time of data processing [6]. In this paper, we refer to the edge server as a local server
that can offload traffic data processing load from the cloud server and assume that the proposed
data imputation algorithm is performed in the local server. The proposed data imputation algorithm
uses the spatio-temporal characteristics of traffic data based on Long Short-Term Memory (LSTM)
networks [7, 8], which have been adopted with success to solve the long-distance dependence in
vehicle networks.

Contributions. In order to support uninterrupted and seamless V2I services even with RSU failures
and the corresponding missing data, we propose an efficient traffic data imputation algorithm that
can be deployed in the local server with the cached traffic dataset. This makes RSUs only perform
simple operations, such as traffic data collection and store-and-forward delivery between the local
server and OBUs. We adopt an LSTM network to learn the representation of time series traffic data
and propose parameter transferred LSTM network for efficient spatial data imputation. The proposed
algorithm can reduce training time that is critical for several V2I services, while maintaining the
data imputation performance. For efficient algorithm design, we explicitly take into account the
spatio-temporal characteristics of traffic data. Specifically, the temporal dependency of the traffic
data can be efficiently captured by using LSTM based learning process. The learning process can
be significantly expedited by redesigning the typical LSTM network as multiple LSTM layers with
transferred parameters, because the spatial correlation of the traffic data enables the parameters
trained in the learning process to be transferable. This eventually reduces the training and imputing
time. Moreover, the spatial correlation permits the use of a simple linear interpolation for efficient
data imputation, so that data imputation can be processed in multiple directions, i.e., both forward and
backward imputations. This can significantly improve data imputation performance. The simulation
and experiment results confirm that the proposed algorithm can significantly reduce the training and
data imputation time while maintaining the imputation accuracy.

2 Related Works

The data imputation methods for missing traffic information can be classified into two categories:
statical methods and deep learning (DL) based methods. The conventional statistical methods that
include time-series approaches (e.g., Autoregressive Integrated Moving Average (ARIMA) [9, 10])
and probabilistic graphical models (e.g., Bayesian Network [11], Markov Chain [12]) are easy to
adopt and show acceptable performance if the proportion of missing data is not significant. However,
these methods can only show limited performance as more data is missing or is more complicated
(e.g., dynamic patterns of data, non-linear data, etc.).

Alternatively, deep learning based methods have been proposed to impute the missing data, in
particular, with non-linearity. LSTM is one of the general deep learning models that has been widely
used for applications including time-series data such as speech recognition, weather forecasting,
and traffic prediction [13–15]. Traffic data imputation can also be well-captured by LSTM networks
for V2I applications [16, 17]. In [16], traffic flow prediction for missing data using multiscale
LSTM (LSTM-M) is proposed, which shows satisfactory results for both short-time and long-time
predictions. However, LSTM-M may generate constant values when available information is not
enough to capture the patterns of missing data. An imputation algorithm for consecutively missing
values for long-period time-series data partially spatial is proposed based on transferred LSTM
networks [17]. While these traffic prediction approaches can impute the missing data with improved
performance, it is still challenging to recover a large amount of consecutive data potentially missed
by the failure of the data collector (e.g., RSUs).
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Figure 1: The architecture of general LSTM network (a) with spatio-temporal input data (b) and
output data (c).

Table 1: Summary of data imputation techniques.
Ref. Input Data Application Methodology Training Domain
[9] Traffic flow data (STAT) ARIMA Temporal

[10] Traffic flow data (STAT) ARIMA Spatio-temporal
[11] Traffic flow data (STAT) Markov chain Temporal
[12] Traffic speed data (STAT) Bayesian Network Spatio-temporal
[16] Traffic flow data (DL) LSTM-M Temporal
[17] Air pollution data (DL) Transferred LSTM Temporal & partially spatial
[18] Traffic speed data (DL) LSTM & Bi-LSTM Spatio-temporal
[19] Temperature data (DL) Stacked LSTM Spatio-temporal

In order to efficiently extract the representation of a large amount of missing data, both spatial and
temporal relationship of the data needs to be considered. However, only a few studies have deployed
LSTM based imputation for spatio-temporal missing data. In [18], LSTM and Bidirectional-LSTM
(Bi-LSTM) are combined to enhance the feature learning from the large-scale spatial time-series
data. Similarly, stacked LSTM is used for the prediction of spatio-temporal weather data [19]. These
approaches are based on a multi-layered structure where each layer must be processed sequentially
and a layer is trained in a single domain. For example, as shown in Figure 1, traffic data collected
from different locations can be used to impute missing data based on LSTM with multiple layers. An
LSTM layer is trained in the temporal domain after spatial patterns of each dataset are trained. This
type of structure is considered as a general LSTM network structure for the data with spatio-temporal
characteristics. Table 1 summarizes the approaches discussed above.

3 Traffic Management System in V2I Network

3.1 System Description

We consider V2I networks that consist of a cloud server, local servers, RSUs, and OBUs. The
considered network has a hierarchical structure described as follows. RSUs upload the traffic data
collected by OBUs to the cloud server through the local server. Similarly, the cloud server provides
OBUs with V2I services using the traffic data uploaded from the local server and RSU. In the
proposed system, we assume that the local server has limited storage so that it can store partial traffic
data recently observed from OBUs. The overall description of the proposed V2I network is shown in
Figure 2.

In this paper, each OBU is dynamically associated with RSUs as it moves, while each RSU is
connected to the local server. An RSU denoted as rk (k ∈ K), where K is an index set of RSUs,
has its adjacent neighbor RSUs rk−N , · · · , rk−1, rk+1, · · · , rk+N . An RSU rk collects traffic speed
data of OBUs moving in a specific direction. The traffic speed data collected from rk is denoted as
xk = [xk(1), · · · , xk(L)], where xk(t) ∈ R is the speed data at time t and L is the data length. Since
the adjacent RSUs are placed at a fixed distance, xk−N , · · · ,xk+N are correlated temporally and
spatially.
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Figure 2: Overall description of the proposed V2I system.

Figure 3: Illustrative examples of RSU failure scenario and data imputation.

3.2 Problem Formulation

We consider a scenario where the operation of an RSU is temporarily failed so that the local server
cannot provide the traffic speed data collected at the failed RSU to OBUs. The missing data from the
RSU can be recovered by traffic speed data imputation in a short period of time.

Let xk be the lost traffic data of the failed RSU rk. Since the traffic speed data collected at each
RSU are temporally and spatially correlated, xk lost in failed rk can be imputed by using the data
from adjacent RSUs. The proposed local server observes the traffic data collected from 2N adjacent
RSUs (i,e., xk−N , · · · ,xk−1,xk+1, · · · ,xk+N ) and recover the lost traffic data xk based on the
data imputation, as shown in Figure 3. Function f : R2N×L → RL and f ′ : R2N×L → RL denote
the general LSTM network and the proposed data imputation algorithm discussed in Section 4,
respectively. Then, the data x̂k = [x̂k(1), · · · , x̂k(L)] and x̂′k = [x̂′k(1), · · · , x̂′k(L)] imputed by
them can be expressed as

x̂k = f(xk−N , · · · ,xk−1,xk+1, · · · ,xk+N ),

x̂′k = f ′(xk−N , · · · ,xk−1,xk+1, · · · ,xk+N ).
(1)

The goal is to reduce training and imputing time for data imputation while the performance deviation
compared to the general LSTM network is limited. Given a performance measure e : R2×L → R and
a maximum performance deviation ε, the proposed algorithm can reduce the training and imputing
time T required to impute x̂′k with the constraint

|e(x̂′k,xk)− e(x̂k,xk)| ≤ ε
for dataset xk−N , · · · ,xk−1,xk+1, · · · ,xk+N . In this paper, we use the root mean square error
(RMSE) as the performance measure e(·, ·), expressed as

e(x̂′k,xk) =

√√√√ 1

L

L∑
j=1

(x̂′k(j)− xk(j))2. (2)

Thus, our proposed algorithm can provide OBUs with traffic speed data of failed RSU section using
stable and efficient parameter transferred LSTM network.

4 Parameter Transferred LSTM

In this paper, we propose a data imputation architecture, referred to as parameter transferred LSTM,
which aims at imputing dataset xk missed by an RSU rk using 2N datasets from its adjacent RSUs,

4



Figure 4: The overall architecture of the proposed algorithm.

xk−N , · · · ,xk−1,xk+1, · · · ,xk+N . The overall procedure of the proposed parameter transferred
LSTM is shown in Figure 4-(a), which consists of bidirectional imputations (i.e., forward and
backward imputations) with parameter transfer. Each directional imputation is based on consecutive
(N − 1) LSTM layers and the parameters trained from an LSTM layer are transferred to its next
LSTM layer. Each LSTM layer predicts the traffic speed data for its next RSU in the spatial domain.
For example, in forwarding imputation, xk−(N−l+1) is used as input data to predict the traffic speed
data xk−(N−l) at the l-th LSTM layer.

Let f [l]t , i[l]t , c[l]t , o[l]t , and h[l]t be the variables of the forget gate, input gate, cell state, output gate, and
hidden state of l-th forwarding imputation LSTM layer at time t, which are expressed as [20]

f
[l]
t = σ(W

[l]
f · [ht−1, xk−(N−l+1)(t)] + bf ),

i
[l]
t = σ(W

[l]
i · [ht−1, xk−(N−l+1)(t)] + bi),

c
[l]
t = f

[l]
t ∗ c

[k]
t−1 + i

[l]
t ∗ tanh(W [l]

c [ht−1, xk−(N−l+1)(t)] + bi),

o
[l]
t = σ(W [l]

o · [ht−1, xk−(N−l+1)(t)] + bo),

h
[l]
t = o

[l]
t ∗ tanh(c

[l]
t ),

(3)

where ∗ denotes the Hadamard product, W [l]
f , W [l]

i , W [l]
c , and W [l]

o denote the weight matrices of
gates, bf , bi, and bo denote bias vector parameters, and σ(·) is the sigmoid function. At each layer,
mean square error (MSE) is used as a loss function, expressed as

J(xk−(N−l),yl) =
1

L

L∑
t=1

(xk+l(t)− yl(t))2 (4)

where yl = [yl(1), · · · , yl(L)] denotes the predicted traffic speed value in the l-th LSTM layer at time
t. Note that the LSTM training procedures are the same for the backward imputation for predicting
xk+(N−l) from data xk+(N−l+1) at the l-th backward LSTM layer.
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The parameters of the LSTM network from the trained l-th LSTM layer are transferred to the next
layer by passing the weight matrices, cell states, and hidden states, i.e.,

W
[l+1]
f ←W

[l]
f

W
[l+1]
i ←W

[l]
i

W
[l+1]
c ←W

[l]
c

W
[l+1]
o ←W

[l]
o

, c[l+1]
0 ← c

[l]
L , and h

[l+1]
0 ← h

[l]
L . (5)

The parameters trained from the l-th LSTM layer are transferred to the (l + 1)-th LSTM layer as its
initial parameters for training. This process repeats up to the (N − 1)-th LSTM layer. This is shown
in Figure 4-(b). The proposed parameter transferred LSTM architecture can significantly reduce
the computation complexity by considerably decreasing the dimension of the LSTM parameters.
Moreover, the parameters of the proposed LSTM can be efficiently initialized, thereby expediting the
characterization of prevalent spatio-temporal traffic data patterns.

Given the two predicted outputs y−N and y+
N from xk−1 with the forward imputation and xk+1

with backward imputation, respectively, xk is determined by the linear interpolation using spatial
correlation for efficient data imputation. Let ρ− and ρ+ be the average spatial correlation coefficients
of the forward and backward input datasets, which are expressed as

ρ− =
1

N − 1

N−1∑
l=1

ρ(xk−l,xk−l−1) and ρ+ =
1

N − 1

N−1∑
l=1

ρ(xk+l,xk+l+1), (6)

where

ρ(xi,xi+1) =

∑L
j=1(xi(j)− xi)(xi+1(j)− xi+1)√∑L

j=1(xi(j)− xi)2
∑L
j=1(xi+1(j)− xi+1)2

(7)

with xi =
1
L

∑L
j=1 xi(j). Then, the data imputation for missing data xk is determined as a linear

interpolation of y−N and y+
N , i.e.,

x̂′k = (1− α)y−N + αy+
N (8)

with a weight α = ρ−
ρ−+ρ+

computed by the average spatial correlation coefficients ρ− and ρ+.

5 Results and Discussions

In this section, we evaluate the performance of the proposed data imputation algorithm based on
synthetic traffic data and actual traffic data collected from highways. The synthetic traffic data is
randomly generated with spatial and temporal correlations. We also use the actual traffic data that is
collected by Korea Expressway Corporation from January to April 2020 [21].

5.1 Simulation Results

Our focus of this section is on studying the impact of traffic data correlation, short-time, long-time
dependency, and the number of traffic speed datasets on the imputation performance of the proposed
algorithm. For simulations, we evaluate the performances of two data imputation algorithms, which
are based on a general LSTM (G-LSTM) network discussed in Section 2, and the proposed parameter
transferred LSTM (PT-LSTM) network.

The synthetic traffic data xk = [xk(1), · · · , xk(L)](k ∈ K) is randomly generated from the Gaussian
distribution N(0, 12). The adjacent data xk+1 is also generated based on the Gaussian distribution
but is temporally and spatially correlated with xk such that ρ(xk,xk+1). We measure the accuracy in
terms of RMSE and training time on average over 100 independent simulations. For both algorithms,
the epoch during the training is set as 50. For simulations, the average correlation of data between
RSUs is set as ρ(xk,xk+1) ∈ {0.1, 0.2, · · · , 0.8, 0.9} where data length and the number of adjacent
RSU are set as L = 200 and N = 4 by default. For simplicity, the average spatial correlation
coefficients of the forward and backward imputation are equally set, i.e., ρ+ = ρ−, so that the linear
interpolation weight is α = 0.5. For convenience, we simply denote the average spatial correlation
coefficients by ρ.
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Table 2: Imputation performance (RMSE) of PT-LSTM and G-LSTM
Length of input data (L), where N = 4 Number of input data (N ), where L = 200

ρ RMSE 100 200 300 RMSE 2 3 4 5

0.3 PT-LSTM 1.7165 2.0112 2.5137 PT-LSTM 2.2152 2.1346 2.0112 1.9511
G-LSTM 2.2759 2.1715 2.8253 G-LSTM 2.4188 2.2321 2.1715 2.1638

0.6 PT-LSTM 0.9123 0.9139 0.8928 PT-LSTM 0.9857 0.9166 0.9139 0.8810
G-LSTM 1.0035 0.9513 0.9506 G-LSTM 0.9851 0.8473 0.9513 0.9550
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Figure 5: Performance of PT-LSTM and G-LSTM

The simulation results for performance evaluation of the data imputation algorithms over the length
of input data (L) and the number of spatially correlated input data (N ) are shown in Figure 5 and
Table 2. It is observed that most of the imputation accuracy measured by RMSE improves both
for PT-LSTM and G-LSTM as the length of input data, the number of input data, and the average
correlation coefficients increase. This is because LSTM networks can be better trained by such data
sets, i.e., more data with higher correlation and less overfitting problem.

For the comparison between PT-LSTM and G-LSTM, the proposed PT-LSTM significantly reduces
the training and imputation time, as shown in Figure 5-(a) and Figure 5-(b). It is clearly observed that
PT-LSTM requires significantly lower training and imputation time than G-LSTM for all the ranges
of input data lengths and the numbers of input data. This is because, unlike G-LSTM, PT-LSTM
allows the parameters trained from one LSTM to be transferred to adjacent LSTMs, reducing the
dimension of the LSTM parameters for the characterization of representative patterns for missing
traffic data.

While the proposed PT-LSTM significantly reduces the training and imputation time, PT-LSTM still
shows better or similar imputation accuracy than G-LSTM for all the range of correlations, as shown
in Figure 5-(c). For example, PT-LSTM outperforms G-LSTM up to 45.42% at ρ = 0.1. This implies
that PT-LSTM can efficiently take into account the correlation in the traffic data for imputation, even
for the data with relatively lower correlations.

Therefore, it can be concluded from the simulation results that the proposed PT-LSTM can impute
data with lower complexity while maintaining data imputation accuracy.

5.2 Experiment Results

In this section, we examine the performance of the proposed PT-LSTM using the actual traffic speed
dataset. The data of the traffic speed were collected every 5 minutes from February to April 2020. We
use six regions of the highway and each region is covered by RSUs. The distance between RSUs is
8km. We evaluate the average performance of the algorithms on the same day of the week for three
months. In the experiments, missing daily traffic data xk = [xk(1), · · · , xk(L)] with L = 288 is
intentionally set in order to evaluate the performance of data imputation algorithms. The number of
adjacent nodes is N = 4.

For performance comparison, we evaluate the performance based on four existing data imputation
algorithms: CNN-LSTM [22], Bi-LSTM [23], GRU [15] and G-LSTM. CNN-LSTM [22] for traffic
data imputation is an algorithm that captures spatio-temporal with convolutional layers while explicitly

7



Table 3: Imputation accuracy (RMSE)
RMSE GRU [15] Bi-LSTM [23] CNN-LSTM [22] G-LSTM PT-LSTM

Region 1 5.7214 5.7673 5.7592 5.7207 7.2434
Region 2 7.9827 8.2233 6.7072 8.0161 5.5162
Region 3 14.0222 14.7628 11.6910 14.0843 6.7772
Region 4 7.1805 7.2891 6.6919 7.1950 6.8687
Region 5 7.7931 8.5033 8.2154 7.7832 8.9219
Region 6 7.4122 7.4037 7.1821 7.4197 13.4166

Table 4: Training and imputation time (seconds)
Time (sec) GRU [15] Bi-LSTM [23] CNN-LSTM [22] G-LSTM PT-LSTM
Region 1 1002.35 1580.00 1398.78 1315.59 225.84
Region 2 1005.16 1575.63 1404.20 1307.77 230.82
Region 3 997.91 1575.74 1396.53 1309.96 233.56
Region 4 1003.08 1605.47 1407.67 1318.48 218.56
Region 5 1005.30 1580.73 1409.51 1322.49 191.67
Region 6 1009.90 1580.28 1410.73 1329.32 223.03
Average

(Ratio [%])
1004.96

(455.60%)
1582.80

(717.56%)
1404.57

(636.75%)
1317.27

(597.18%)
220.58
(100%)

considering various types of short-term and long-term patterns. The number of filters is set as 288 and
the kernel size is set as 4. Bi-LSTM [23] is an algorithm that captures the relation of past and future
data simultaneously and has a similar architecture with the proposed algorithm. GRU [15] can also
be used as it is a modified LSTM for a simpler structure and convenience to solve [24]. G-LSTM is
again used for performance comparison in the same way as shown in Section 5. All experiments with
models discussed above are performed on the platform with NVIDIA GeForce RTX 2080 Ti GPUs.

Table 3 shows the imputation accuracy of the algorithms for the traffic data sets collected from
different regions. It can be observed that any particular algorithm cannot always show the best
imputation accuracy. Rather, the performance of imputation accuracy depends on the traffic data set.

In terms of time complexity for data imputation, the proposed PT-LSTM clearly shows the best
performance as shown in Table 4. In these experiments, PT-LSTM requires approximately 220 seconds
on average for all traffic data sets from all regions. However, other algorithms take significantly more
time (i.e., approximately 4.5 times more for GRU, 6 times more for CNN-LSTM, G-LSTM, and 7
times more for Bi-LSTM) than PT-LSTM.

Hence, we can conclude that the proposed PT-LSTM is a very efficient traffic data imputation
algorithm.

6 Conclusion

In this paper, we have proposed a data imputation algorithm based on parameter transferred LSTM
architecture in V2I networks. In order to support seamless V2I services, the training and data
imputation time is critical for the services while maintaining the data imputation performance.
Therefore, we take into account the spatio-temporal characteristics of traffic data for efficient algorithm
design. The learning process of the proposed PT-LSTM can be significantly reduced as the dimension
of the LSTM parameters decreases by transferring the trained LSTM parameters to adjacent LSTMs.
This enables every LSTM layers to skip redundant parameter training steps, thereby expediting the
characterization of the representative traffic speed patterns. Moreover, the traffic speed data were
imputed using linear interpolation that can improve imputation performance. Our simulation and
experiment results confirm that the proposed algorithm can impute data with lower time complexity
while maintaining data imputation performance by comparing with existing LSTM algorithms in
terms of imputation accuracy and training and imputing time.
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